前言

这几天看 asyncio 相关的 pycon 视频又重温了 asyncio 的官方文档,收获很多。之前 asyncio 被吐槽的一点就是文档写的不好,Python 3.7 时 asyncio 的官方文档被 Andrew Svetlov 以及 Yury Selivanov 等核心开发者重写了,新的版本我觉得已经好很多了。在这里记录一下我对 asyncio 的一些理解。

核心概念

asyncio 里面主要有 4 个需要关注的基本概念

Eventloop

Eventloop 可以说是 asyncio 应用的核心,是中央总控。Eventloop 实例提供了注册、取消和执行任务和回调的方法。

把一些异步函数 (就是任务,Task,一会就会说到) 注册到这个事件循环上,事件循环会循环执行这些函数 (但同时只能执行一个),当执行到某个函数时,如果它正在等待 I/O 返回,事件循环会暂停它的执行去执行其他的函数;当某个函数完成 I/O 后会恢复,下次循环到它的时候继续执行。因此,这些异步函数可以协同 (Cooperative) 运行:这就是事件循环的目标。

Coroutine

协程 (Coroutine) 本质上是一个函数,特点是在代码块中可以将执行权交给其他协程:

 cat coro1.py
import asyncio


async def a():
    print('Suspending a')
    await asyncio.sleep(0)
    print('Resuming a')


async def b():
    print('In b')


async def main():
    await asyncio.gather(a(), b())


if __name__ == '__main__':
    asyncio.run(main())

这里面有 4 个重要关键点:

  1. 协程要用 async def 声明,Python 3.5 时的装饰器写法已经过时,我就不列出来了。
  2. asyncio.gather 用来并发运行任务,在这里表示协同的执行 a 和 b2 个协程
  3. 在协程 a 中,有一句 await asyncio.sleep (0),await 表示调用协程,sleep 0 并不会真的 sleep(因为时间为 0),但是却可以把控制权交出去了。
  4. asyncio.run 是 Python 3.7 新加的接口,要不然你得这么写:
loop = asyncio.get_event_loop()
loop.run_until_complete(main())
loop.close()

好了,我们先运行一下看看:

 python coro1.py
Suspending a
In b
Resuming a

看到了吧,在并发执行中,协程 a 被挂起又恢复过。

Future

接着说 Future,它代表了一个「未来」对象,异步操作结束后会把最终结果设置到这个 Future 对象上。Future 是对协程的封装,不过日常开发基本是不需要直接用这个底层 Future 类的。我在这里只是演示一下:

In : def c():
...:     print('Inner C')
...:     return 12
...:

In : future = loop.run_in_executor(None, c)  # 这里没用await,None 表示默认的 executor
Inner C

In : future  # 虽然c已经执行了,但是状态还是 pending。
Out: <Future pending cb=[_chain_future.<locals>._call_check_cancel() at /usr/local/lib/python3.7/asyncio/futures.py:348]>

In : future.done()  # 还没有完成
Out: False

In : for a in dir(future):
...:     if not a.startswith('_'):
...:         print(a)
...:
add_done_callback
cancel
cancelled
done
exception
get_loop
remove_done_callback
result
set_exception
set_result

可以对这个 Future 实例添加完成后的回调 (add_done_callback)、取消任务 (cancel)、设置最终结果 (set_result)、设置异常 (如果有的话,set_exception) 等。现在我们让 Future 完成:

In : await future
Out: 12

In : future
Out: <Future finished result=12>

In : future.done()
Out: True

In : future.result()
Out: 12

看到了吧,await 之后状态成了 finished。这里顺便说一下,一个对象怎么样就可以被 await(或者说怎么样就成了一个 awaitable 对象)呢?给类实现一个__await__方法,Python 版本的 Future 的实现大概如下:

def __await_(self):
    if not self.done():
        self._asyncio_future_blocking = True
        yield self
    if not self.done():
        raise RuntimeError("await wasn't used with future")
    return self.result()

这样就可以await future了,那为什么await future后 Future 的状态就能改变呢,这是因为用loop.run_in_executor创建的 Future 注册了一个回调(通过asyncio.futures.wrap_future,加了一个_call_set_state回调,有兴趣的可以通过延伸阅读链接 2 找上下文)。

__await__里面的yield self不要奇怪,主要是为了兼容__iter__,给旧的yield from用:

In : future = loop.run_in_executor(None, c)
Inner C

In : future
Out: <Future pending cb=[_chain_future.<locals>._call_check_cancel() at /usr/local/lib/python3.7/asyncio/futures.py:348]>

In : def spam():
...:     yield from future
...:

In : s = spam()

In : next(s)
Out: <Future pending cb=[_chain_future.<locals>._call_check_cancel() at /usr/local/lib/python3.7/asyncio/futures.py:348]>

新的替代yield from的用法 await 必须在异步函数 (用 async def 申明) 中使用:

In : def spam():
...:     await future
...:
  File "cell_name", line 5
SyntaxError: 'await' outside async function

Task

Eventloop 除了支持协程,还支持注册 Future 和 Task2 种类型的对象,那为什么要存在 Future 和 Task 这 2 种类型呢?

先回忆前面的例子,Future 是协程的封装,Future 对象提供了很多任务方法 (如完成后的回调、取消、设置任务结果等等),但是开发者并不需要直接操作 Future 这种底层对象,而是用 Future 的子类 Task 协同的调度协程以实现并发。

Task 非常容易创建和使用:

# 或者用task = loop.create_task(a())
In : task = asyncio.ensure_future(a())

In : task
Out: <Task pending coro=<a() running at /Users/dongwm/mp/2019-05-22/coro1.py:4>>

In : task.done()
Out: False

In : await task
Suspending a
Resuming a

In : task
Out: <Task finished coro=<a() done, defined at /Users/dongwm/mp/2019-05-22/coro1.py:4> result=None>

In : task.done()
Out: True

asyncio 并发的正确 / 错误姿势

在代码中使用 async/await 是不是就能发挥 asyncio 的并发优势么,其实是不对的,我们先看个例子:

async def a():
    print('Suspending a')
    await asyncio.sleep(3)
    print('Resuming a')


async def b():
    print('Suspending b')
    await asyncio.sleep(1)
    print('Resuming b')


async def s1():
    await a()
    await b()

有 2 个协程 a 和 b,分别 sleep1 秒和 3 秒,如果协程可以并发执行,那么执行时间应该是 sleep 最大的那个值 (3 秒),现在它们都在 s1 协程里面被调用。大家先猜一下 s1 会运行几秒?

我们写个小程序验证一下:

def show_perf(func):
    print('*' * 20)
    start = time.perf_counter()
    asyncio.run(func())
    print(f'{func.__name__} Cost: {time.perf_counter() - start}')

大家注意我这个时间计数用的方法,没有用 time.time,而是用了 Python 3.3 新增的 time.perf_counter 它是现在推荐的用法。我们在 IPython 里面验证下:

In : from coro2 import *

In : show_perf(s1)
********************
Suspending a
Resuming a
Suspending b
Resuming b
s1 Cost: 4.009796932999961

看到了吧,4 秒!!!,相当于串行的执行了 (sleep 3 + 1)。这是错误的用法,应该怎么用呢,前面的 asyncio.gather 就可以:

async def c1():
    await asyncio.gather(a(), b())

In : show_perf(c1)
********************
Suspending a
Suspending b
Resuming b
Resuming a
c1 Cost: 3.002452698999832

看到了吧,3 秒!另外一个是 asyncio.wait:

async def c2():
    await asyncio.wait([a(), b()])

In : show_perf(c2)
...
c2 Cost: 3.0066957049998564

同样是 3 秒。先别着急,gather 和 wait 下篇文章还会继续对比。还有一个方案就是用 asyncio.create_task:

async def c3():
    task1 = asyncio.create_task(a())
    task2 = asyncio.create_task(b())
    await task1
    await task2


async def c4():
    task = asyncio.create_task(b())
    await a()
    await task

In : show_perf(c3)
...
c3 Cost: 3.002332438999929

In : show_perf(c4)
...
c4 Cost: 3.002270970000154

都是 3 秒。asyncio.create_task 相当于把协程封装成 Task。不过大家要注意一个错误的用法:

async def s2():
    await asyncio.create_task(a())
    await asyncio.create_task(b())

In : show_perf(s2)
...
s2 Cost: 4.004671427999938

直接 await task 不会对并发有帮助 *。asyncio.create_task 是 Python 3.7 新增的高阶 API,是推荐的用法,其实你还可以用 asyncio.ensure_future 和 loop.create_task:

async def c5():
    task = asyncio.ensure_future(b())
    await a()
    await task


async def c6():
    loop = asyncio.get_event_loop()
    task = loop.create_task(b())
    await a()
    await task

In : show_perf(c5)
...
c5 Cost: 3.0033873750003295

In : show_perf(c6)
...
c6 Cost: 3.006120122000084

到这里,我们一共看到 2 种错误的,6 种正确的写法。你学到了么?

代码目录

本文代码可以在 mp 项目 找到

延伸阅读

  1. https://www.python.org/dev/peps/pep-0492/
  2. https://github.com/python/cpython/blob/3.7/Lib/asyncio/futures.py#L365