ipython的一些高级用法(一)
/ / / 阅读数:3247前言
以前在我的 PPT python 高级编程 也提到了一些关于 ipython 的用法。今天继续由浅入深的看看 ipython, 本文作为读者的你已经知道 ipython 并且用了一段时间了.
%run
这是一个 magic 命令,能把你的脚本里面的代码运行,并且把对应的运行结果存入 ipython 的环境变量中:
$cat t.py
# coding=utf-8
l = range(5)
$ipython
In [1]: %run t.py # `%`可加可不加
In [2]: l # 这个l本来是t.py里面的变量, 这里直接可以使用了
Out[2]: [0, 1, 2, 3, 4]
alias
In [3]: %alias largest ls -1sSh | grep %s In [4]: largest to total 42M 20K tokenize.py 16K tokenize.pyc 8.0K story.html 4.0K autopep8 4.0K autopep8.bak 4.0K story_layout.html |
PS 别名需要存储的,否则重启 ipython 就不存在了:
In [5]: %store largest
Alias stored: largest (ls -1sSh | grep %s)
下次进入的时候%store -r
bookmark - 对目录做别名
In [2]: %pwd Out[2]: u'/home/vagrant' In [3]: %bookmark dongxi ~/shire/dongxi In [4]: %cd dongxi /home/vagrant/shire/dongxi_code In [5]: %pwd Out[5]: u'/home/vagrant/shire/dongxi_code' |
ipcluster - 并行计算
其实 ipython 提供的方便的并行计算的功能。先回答 ipython 做并行计算的特点:
1.
$wget http://www.gutenberg.org/files/27287/27287-0.txt
|
第一个版本是直接的,大家习惯的用法.
In [1]: import re In [2]: import io In [3]: non_word = re.compile(r'[\W\d]+', re.UNICODE) In [4]: common_words = { ...: 'the','of','and','in','to','a','is','it','that','which','as','on','by', ...: 'be','this','with','are','from','will','at','you','not','for','no','have', ...: 'i','or','if','his','its','they','but','their','one','all','he','when', ...: 'than','so','these','them','may','see','other','was','has','an','there', ...: 'more','we','footnote', 'who', 'had', 'been', 'she', 'do', 'what', ...: 'her', 'him', 'my', 'me', 'would', 'could', 'said', 'am', 'were', 'very', ...: 'your', 'did', 'not', ...: } In [5]: def yield_words(filename): ...: import io ...: with io.open(filename, encoding='latin-1') as f: ...: for line in f: ...: for word in line.split(): ...: word = non_word.sub('', word.lower()) ...: if word and word not in common_words: ...: yield word ...: In [6]: def word_count(filename): ...: word_iterator = yield_words(filename) ...: counts = {} ...: counts = defaultdict(int) ...: while True: ...: try: ...: word = next(word_iterator) ...: except StopIteration: ...: break ...: else: ...: counts[word] += 1 ...: return counts ...: In [6]: from collections import defaultdict # 脑残了 忘记放进去了.. In [7]: %time counts = word_count(filename) CPU times: user 88.5 ms, sys: 2.48 ms, total: 91 ms Wall time: 89.3 ms |
现在用 ipython 来跑一下:
ipcluster start -n 2 # 好吧, 我的Mac是双核的 |
先讲下 ipython 并行计算的用法:
In [1]: from IPython.parallel import Client # import之后才能用%px*的magic In [2]: rc = Client() In [3]: rc.ids # 因为我启动了2个进程 Out[3]: [0, 1] In [4]: %autopx # 如果不自动 每句都需要: `%px xxx` %autopx enabled In [5]: import os # 这里没autopx的话 需要: `%px import os` In [6]: print os.getpid() # 2个进程的pid [stdout:0] 62638 [stdout:1] 62636 In [7]: %pxconfig --targets 1 # 在autopx下 这个magic不可用 [stderr:0] ERROR: Line magic function `%pxconfig` not found. [stderr:1] ERROR: Line magic function `%pxconfig` not found. In [8]: %autopx # 再执行一次就会关闭autopx %autopx disabled In [10]: %pxconfig --targets 1 # 指定目标对象, 这样下面执行的代码就会只在第2个进程下运行 In [11]: %%px --noblock # 其实就是执行一段非阻塞的代码 ....: import time ....: time.sleep(1) ....: os.getpid() ....: Out[11]: <AsyncResult: execute> In [12]: %pxresult # 看 只返回了第二个进程的pid Out[1:21]: 62636 In [13]: v = rc[:] # 使用全部的进程, ipython可以细粒度的控制那个engine执行的内容 In [14]: with v.sync_imports(): # 每个进程都导入time模块 ....: import time ....: importing time on engine(s) In [15]: def f(x): ....: time.sleep(1) ....: return x * x ....: In [16]: v.map_sync(f, range(10)) # 同步的执行 Out[16]: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81] In [17]: r = v.map(f, range(10)) # 异步的执行 In [18]: r.ready(), r.elapsed # celery的用法 Out[18]: (True, 5.87735) In [19]: r.get() # 获得执行的结果 Out[19]: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81] |
入正题:
In [20]: def split_text(filename): ....: text = open(filename).read() ....: lines = text.splitlines() ....: nlines = len(lines) ....: n = 10 ....: block = nlines//n ....: for i in range(n): ....: chunk = lines[i*block:(i+1)*(block)] ....: with open('count_file%i.txt' % i, 'w') as f: ....: f.write('\n'.join(chunk)) ....: cwd = os.path.abspath(os.getcwd()) ....: fnames = [ os.path.join(cwd, 'count_file%i.txt' % i) for i in range(n)] # 不用glob是为了精准 ....: return fnames In [21]: from IPython import parallel In [22]: rc = parallel.Client() In [23]: view = rc.load_balanced_view() In [24]: v = rc[:] In [25]: v.push(dict( ....: non_word=non_word, ....: yield_words=yield_words, ....: common_words=common_words ....: )) Out[25]: <AsyncResult: _push> In [26]: fnames = split_text(filename) In [27]: def count_parallel(): .....: pcounts = view.map(word_count, fnames) .....: counts = defaultdict(int) .....: for pcount in pcounts.get(): .....: for k, v in pcount.iteritems(): .....: counts[k] += v .....: return counts, pcounts .....: In [28]: %time counts, pcounts = count_parallel() # 这个时间包含了我再聚合的时间 CPU times: user 47.6 ms, sys: 6.67 ms, total: 54.3 ms # 是不是比直接运行少了很多时间? Wall time: 106 ms # 这个时间是 In [29]: pcounts.elapsed, pcounts.serial_time, pcounts.wall_time Out[29]: (0.104384, 0.13980499999999998, 0.104384) |
更多地关于并行计算请看这里: Parallel Computing with IPython